X-Ray Vision of Violence in Interacting Galaxies

Facebook Logo LinkedIn Logo Twitter Logo Email Logo Pinterest Logo

Press Release
Friday, April 8, 2005
Source: Royal Astronomical Society

Ongoing research by an international team of astronomers is providing new insights into cataclysmic cosmic collisions between galaxy clusters.

Using the world's most powerful X-ray space observatory, the team is unravelling the complex interactions that take place in the "traffic pile-ups" that occur as clusters containing hundreds of galaxies and trillions of solar masses of gas and dark matter interact and merge.

Speaking on Friday 8th April at the RAS National Astronomy Meeting in Birmingham, Dr. Elena Belsole (University of Bristol) will present new results obtained with ESA's orbiting XMM-Newton observatory. The images and other data reveal an environment racked by violent shock waves that squeeze and compress the intra-cluster gas, raising its temperature to many millions of degrees.

Galaxy clusters, measuring up to 6 million light years across, are the largest objects whose mass can be measured by astronomers. From observations of many clusters, it is possible to estimate the distribution of mass in the Universe as a whole. This provides important information about what the Universe is made of, how it began, and how it might end.

However, only 5% of the mass of galaxy clusters lies in stars and galaxies. The space between the galaxies is filled with gas which is so hot (10 - 100 million degrees Celsius) that it can only be seen at X-ray wavelengths.

How did the gas between the galaxies get so hot? Galaxy clusters grow through the action of gravity, continuously pulling in smaller galaxy systems and undergoing the occasional violent collision with an object of comparable size.

In such events, the clusters start to feel each other's gravitational pull: they interact and, after a prolonged period, they finally merge. These mergers are the most energetic events to have taken place in the Universe since the Big Bang. The energy released in cluster collisions irreversibly modifies the physical conditions within a cluster through compression waves and shocks which heat the gas to temperatures 10,000 times those on the surface of the Sun.

By using space-based instruments able to see at X-ray wavelengths, Belsole's team has been able to measure the origins and energy of X-rays from galaxy clusters. From the positional information, they were able to map the distribution of the gas in the clusters. From the X-ray energy, they were able to measure the gas temperature. By combining the two, they could map the temperature structure of the cluster gas.

The temperature is the key quantity which allows the scientists to discriminate between clusters which are undergoing dramatic collisions and those which are not. The temperature shows directly the conversion of enormous amounts of kinetic energy into the thermal energy which heats the gas.

"Thanks to observations obtained with XMM-Newton, the most powerful X-ray detector ever built, we are now able to describe fully the gas in galaxy clusters," said Belsole.

"From the temperature, we calculate that clusters can collide at velocities greater than 2,000 km/s. We observe that clusters are unique in their morphology and temperature distribution, and it is through these differences that we can say whether a cluster is young or old."

Belsole's team has recently investigated three different merging clusters each made up of hundreds of galaxies. One of these, known as Abell 1750 (A1750), is a young merger located 1.1 billion light years from Earth. It involves two clusters, separated by more than 3 million light years, which are just starting to interact.

Each of these colliding clusters has a total mass about 500 trillion times that of the Sun and is moving at a speed of around 1,400 km/s. The violent interaction between them causes shocks and compression of the intra-cluster gas, producing an arc-like region of gas between the two with a temperature of 70 million degrees Celsius. The collision will reach its climax in 1 - 2 billion years, when the cores collide and the energy release is at its maximum.

http://www.spaceref.com/news/viewpr.html?pid=16586

* * *

Facebook Logo LinkedIn Logo Twitter Logo Email Logo Pinterest Logo

You are welcome to print and circulate all articles published on Clearharmony and their content, but please quote the source.